Kailey Marcinkowski Chris Swanston

Partners In Action Sault Ste. Marie, MI July 20, 2016

Northern Institute of Applied Climate Science

Climate

Carbon

Bioenergy

Provides **practical** information, resources, **education**, and **technical assistance** related to forests and climate change

Supports the **integration** of climate change information into natural resource management

www.nrs.fs.fed.us/niacs/

Regional multi-institutional partnership:

Climate Change Resource Center

www.fs.usda.gov/ccrc/

http://www.pmel.noaa.gov/elnino/impacts-of-el-nino/

https://www.ncdc.noaa.gov/sotc/national/201602

weather

climate

weather

climate

Global Temperature

warming of about 1.4 degrees Fahrenheit for the globe from 1880 to 2012

Continental U.S. Temperature

Annual Mean Anomalies (°F) vs. 1951-1980

warming of about 1.4 degrees Fahrenheit for the globe from 1880 to 2012

warming of around 2 degrees Fahrenheit for the United States since 1895

hasn't climate change happened before?

isn't climate change a natural process?

hasn't climate change happened before? isn't climate change a natural process? Ves!

hasn't climate change happened before? isn't climate change a natural process?

Temperature and Carbon Dioxide over the Past 400,000 Years Temperature change in degrees Fahrenheit (compared with 1960-1990 baseline) Atmospheric carbon dioxide (parts per million) 400

10

is current climate change part of the natural process?

is current climate change part of the natural process?

water vapor increases as temperatures increase

is current climate change part of the natural process?

atmosphere

atmosphere

atmosphere

atmosphere

without the greenhouse effect, the average temperature on Earth would be about <u>ZERO</u> degrees Fahrenheit.

atmosphere

without the greenhouse effect, the average temperature on Earth would be about <u>ZERO</u> degrees Fahrenheit.

Just a short recap:

- weather and climate are different
 - think outfit vs. closet
- increasing global temperatures
 - 1.4 degrees between 1880 and 2012
- increasing temperatures in the United States
 - nearly 2 degrees since 1895
- changes in climate are a natural process
 - humans disrupting natural climate system
 - concentration of carbon dioxide is highest its been in 400,000 years
- changes caused by increases in greenhouse gases
 - carbon dioxide, methane, water vapor
 - different lifetimes in the atmosphere (carbon dioxide = decades)
- greenhouse gas effect is a natural process
 - Earth would be 0 degrees without it!
 - more greenhouse gases in the atmosphere = more warming

aren't climate models uncertain?

isn't there uncertainty in future projections?

aren't climate models uncertain? isn't there uncertainty in future projections? Ves!

climate models

future greenhouse gas emissions

economics

Just a short recap:

- general circulation models simulate future global climate
 - oceans, atmosphere, land surfaces, cryosphere
- uncertainty within general circulation models
 - cloud dynamics, forcings, extremes, feedbacks
 - models still do a good job of replicating past climate
- uncertainty with future greenhouse gas emissions
 - expectations about future demographics, economics, technology
 - emissions scenarios = inputs into climate models
- range of plausible futures
 - use a range of climate models
 - use a range of emissions scenarios
 - despite uncertainties, can still plan for range of futures

Regional Changes

1895-2011

1950-2011

Regional Projections

Source: Climate Wizard

Precipitation Trends

Precipitation Trends

1951-2006

0.18 in.

Precipitation Projections

8.0%

Source: Climate Wizard

Effects

high magnitude snowfall

lake effect snowfall

snow-water equivalent

National Climate Assessment 2014 (and draft)

Great Lakes

Good

Lake Ontario: +2.7F 1968-2002

Great Lakes

Lake Superior: +4.5F twice the rate of air temperature increase Project to rise +7F by 2050 and +12F by 2100 +5.2F 1968-2002

Lake Huron:

algae

Goodle

and Rapids

invasive species

aquatic ecosystems

Lake Ontario: +2.7F 1968-2002

NEV

Species Range Shift

White Oak

2070-2100 Low

2070-2100 High

Species Range Shift

Quaking Aspen Current Importance Value Modeled Current Low High

2070-2100 Low

2070-2100 High

Just a short recap:

- Midwest temperature changes
 - increased over the last 100+ and 50+ years
 - projected to increase from 4-9 degrees Fahrenheit by 2100
- Midwest precipitation changes
 - slight increase over the past 50 years
 - projected to increase and become wetter by 2100
- climate change effects
 - more frequent heavy precipitation events
 - more lake effect snow, less SWE, earlier snowmelt
 - decreasing lake ice and increasing lake surface water temperatures
 - increase in length of growing season
 - changes in species range

Who Ya Gonna Call?

NIACS!

- Advocate for climate informed management and adaptation
- Support/Coach
 - Work with a diversity of landowners, agencies and groups
- Facilitate
- Outreach/Educator/Cheerleader
 - Climate change issues and impacts
 - Adaptation strategies and actions
- Translate
 - Synthesize and translate technical information to land managers

www.nrs.fs.fed.us/niacs/

if you'd like *even* more information, check out the climate change resource center (www.fs.usda.gov/ccrc/)

And feel free to contact me at <u>kfmarcin@mtu.edu</u> OR <u>kfmarcinkowski@fs.fed.us</u>

questions?

