WIND RIVER RESERVATION

List of Topics

Background
 Reservation Overview
 Petroleum System Overview
Geologic Overview
 Petroleum Systems
 Summary of play types
Conventional / Unconventional Play Types
 Play Type 1 - Basin Margin Subthrust Play
 Play Type 2 - Basin Margin Anticline Play
 Play Type 3 - Deep Basin Structure
 Play Type 4 - Muddy Sandstone Stratigraphic Play
 Play Types 5, 6, 7 - Phosphoria Stratigraphic, Bighorn WedgeEdge Pinchout
 Flathead-Lander and Equivalent Sandstone Play
 Play Types 8, 9, 10, 12 - Madison Limestone, Darwin-Amsden Sandstone
 Triassic and Jurassic Stratigraphic, Cody and Frontier
 Play Type 11 - Shallow Tertiary/Upper Cretaceous Stratigraphic Play
 Play Type 13 - Basin-Center Gas Play

References
Wind River Reservation

RESERVATION OVERVIEW

Page 1 of 18

OVERVIEW

WIND RIVER RESERVATION
The Shoshone and Arapaho Tribes

TRIBAL HEADQUARTERS: Fort Washakie, Wyoming

GEOLOGIC SETTING: Wind River Basin

General Setting
Currently, the Wind River Indian Reservation contains about 3500 square miles of land. The reservation stretches from the northern part of the Owl Creek mountains to Sand Draw in the South. To the east it begins just west of Shoshone and extends westward to the town of Dubois. There are approximately 2,500 Shoshone and approximately 5,000 Arapaho on the reservation.

Government
The Wind River Reservation is governed as follows: Each tribe has its own General Council that meets about three times a year. A General Council is composed of each member of the tribe 18 years and older and is similar to a town meeting. The General Council of each tribe has delegated certain powers to the Business Council, but retains most major decision making authority. The Arapaho Business Council and the Shoshone Business Council each have six members. Each tribe elects six members for a two year term. Each Business Council elects a chairman. Together, these twelve members comprise the Joint Business Council (JBC) of the Shoshone and Arapaho Tribes. The Joint Business Council is directly responsible for the day to day activities on jointly owned resources and joint programs of the tribes.

Wind River Indian Reservation Tax Structure
On December 12, 1978, the Joint Business Council (JBC) of the Shoshone and Arapaho Tribes enacted Ordinance Number 39, effective April 2, 1978. The Ordinance imposed a one-half of one percent (0.5%) Privilege of Doing Business Tax on the market value of gas produced, saved and/or sold from the field where produced within the exterior boundaries of the reservation. Subsequently, the JBC amended Ordinance Number 39 on March 10, 1982 and increased the tax rate from one-half of one percent (0.5%) to four percent (4.0%). None of the oil and gas companies operating on the reservation at that time paid the tax. Several of the major oil and gas producers filed suit against the Tribes challenging their authority to impose taxes on their production. On May 7, 1982 the Federal District Court in Cheyenne ordered the companies to start paying the tax into an escrow account under its control. Although, the JBC enacted the Ordinance back in 1978, no revenues flowed to the Tribes until June of 1986.

On May 6, 1986, the United States District Court dismissed the suit against the Tribes, due to a previous United States Supreme Court decision which allowed Indian Tribal Governments the authority to tax within their boundaries. Since, that time the JBC and the Wind River Tax Commission have collected millions of dollars to support and finance the services it provides to its citizens.

Due to the declining economy and declining production of the aging fields, revenues to the JBC from taxation has been on a dramatic decline. In addition, due to the increased population of non-Indian and corporate citizens, the JBC was and is in dire need of increased revenues in order to provide essential government services, medical services, basic transportation, housing, police protection, fire protection, and solid waste disposal. The demand for these basic infrastructure services far exceed the severance tax revenues.

However, the JBC realizes that it cannot continue to raise its tax rates in order to meet this demand. Therefore, it has been lobbying the Congress to effect some type of change in federal law that will aid Indian Tribes in their efforts to induce economic activity on Indian Reservations.

The JBC has been lobbying for investment tax credits, employment tax credits and have even lobbied for apportionment of state and tribal taxes. However, in the last three years, the JBC has had no success with this campaign. Other energy producing tribes and industry have also lobbied for these incentives, but with no success.

In addition, the Tribes have joined one taxpayer on the Reservation in a lawsuit against the state of Wyoming. The agreement between the Tribes and this taxpayer comes under the 1982 Indian Mineral Development Act. Other companies that would like to do oil and gas business with the Tribes should seriously consider entering into these type of agreements, if they want to avoid dual taxation.

Finally, the Tribes have been negotiating with Wyoming for several years concerning the dual taxation problem. However, after the Cotton Petroleum decision, Wyoming's position on this problem appears to be stronger. But it is important to differentiate the facts of that case with the facts of the case mentioned above. The most important difference being the type of agreement entered into between the tribes and the company. The Tribes are pushing for a solution of the dual taxation problem on the Wind River Indian Reservation, which would serve as a model for all of Indian country.

Contacts
The Joint Business Council feels it is in the best interest of their people to fully develop their oil and gas resources in an efficient, economic and environmentally sound method. The Joint Business Council will accept proposals at your earliest convenience. The Joint Business Council along with staff of the Wind River Tax Commission, the Shoshone Oil and Gas Commission and the attorneys will evaluate all proposals within thirty days of submittal. The Joint Business Council will then act on the recommendation of the staff and attorneys within thirty days of the committee's action.

For additional information, please mail your request and/or proposal to the following:

Joint Business Council
Shoshone and Arapaho Tribes
P.O. Box 830
Fort Washakie, Wyoming 82834

RESERVATION OVERVIEW

Page 1 of 18

The Shoshone and Arapaho Tribes
WIND RIVER RESERVATION

For additional information, please mail your request and/or proposal to the Joint Business Council at the address above.

The Joint Business Council will then act on the recommendation of the staff and attorneys within thirty days of the committee's action.

For additional information, please mail your request and/or proposal to the following:

Joint Business Council
Shoshone and Arapaho Tribes
P.O. Box 830
Fort Washakie, Wyoming 82834
Wind River Basin - Petroleum System Overview

The Wind River Basin is a northwest-southeast trending asymmetrical intermontane basin of the Rocky Mountain Foreland, located in central Wyoming. Province boundaries are defined by fault-bounded Laramide uplifts that surround it. These include the Owl Creek Mountains to the north, Wind River Mountains to the west, Casper arch to the east, and the Sweetwater Uplift to the south. The Wind River Basin Province is about 200 mi. long and 100 mi. wide, encompassing an area of about 11,700 sq. mi. Actual basinal area not capped by eroded Precambrian and/or Paleozoic rock is approximately 7,500 sq. mi. The Wind River Reservation comprises almost half of this basinal area, 3,500 sq. mi. All of the major petroleum systems and play types have been encountered in the reservation area. Approximately 0.35 BBO, 35 MMMBGL, and 2.9 TCFG are known to have been produced from the entire basin since 1884.

A nearly complete stratigraphic section, Cambrian through Tertiary in age fill the sub-basins located within the reservation area of the Wind River Basin. Sevier-aged and Cretaceous epicontinental seaway basins have been complexly folded, thrusted, and faulted during the Laramide orogenic event (initiated latest Cret.-earliest Paleocene). Basement involved and detached structural features create intricate and complicated stratigraphic correlations throughout the Wind River Basin. Early paleozoic platform carbonates and foreland pinch outs of a mainly carbonate province become siliciclastic-dominated by latest Paleozoic time. Sandstone reservoirs of the Pennsian Phosphoria Formation and Pennsylvaniaan Tensleep produce the bulk of the petroleum within the reservation area. Locally, many of the other Cretaceous sandstone reservoirs produce significant quantities of oil and gas. Black shales of the Phosphoria and Mowry formations are considered the source of the petroleum for much of the Wind River basin reservoirs. Deeply buried Cretaceous and Tertiary coals are probably the source of significant amounts of thermogenic methane (gas) found in Cretaceous/Tertiary reservoirs.

![Wind River Reservation Area](image)

Stratigraphic Column

- **Paleozoic**
 - Cambrian
 - Devoring Fm
- **Mesozoic**
 - Jurassic
 - Sundance Fm
- **Cretaceous**
 - Cretaceous
 - Frontier Fm
 - Muddy Sh.
 - Thermopolis Sh.
- **Tertiary**
 - Eocene
 - Fort Union Fm
 - Green River Fm
 - Garfield Sh.
 - Gras Verde Fm
 - Flathead Sh.
 - Undifferentiated

PETROLEUM SYSTEM OVERVIEW

INTRODUCTION

Wind River Reservation - Petroleum System Overview
Regional Geology

The Wind River Basin occupies the geographic center of Wyoming and is surrounded by some of Wyoming’s highest mountains. The Wind River Mountains (13,500+ feet in elevation) form the western boundary of the basin against which several major southwest verging thrust systems abut. The northern margin of the basin is constrained by the Owl Creek and southern Big Horn Mountains, while the southern basin margin is marked by the Granite Mountains. The eastern edge of the basin is delineated by the more subtle topography of the Casper arch which separates the Wind River basin from the Powder River basin. The basin is 180 miles long, northwest to southeast and is 75 miles wide north to south. The reservation area comprises most of the northwestern and central portions of the basin. The predominant pattern of deposition for both the Paleozoic and Mesozoic intervals consist of complexly interbedded sandstone and shales. Only the lower Paleozoic section contains carbonate and evaporite deposits.

Paleozoic and early Mesozoic Geologic History

During Paleozoic and early Mesozoic time all of central Wyoming was part of the stable shelf lying east of the Cordilleran orogenic belt. Deposition upon the shelf occurred primarily in shallow seas. Because of the broad shelfal, area widespread facies changes and unconformities resulted from relatively minor sea level fluctuations. Combined thickness of Cambrian-aged deposits range from 1025’ in the western edge of the basin to approximately 775’ in the east. The Flattop Sandstone and the Gros Ventre Formations consist of predominantly clastic deposits while the Upper Cambrian Gallatin Limestone provides the first evidence of carbonate depositional conditions within the shallow, shelfal environment. Ordovician-aged sediments of the Wind River Reservation are represented only by the Bighorn Dolomite. Estimates in thickness range from 125-300 feet and the dolomite thins to the east and southeast and is absent in the southeast corner of the reservation due to an erosional unconformity. Devonian rocks are thin to absent across the reservation area. The Madison Limestone comprises most of the Mississippian-aged sediments within the reservation. It ranges between 500-700 feet in thickness with the upper portion containing karst features. During Pennsylvanian and Permian time, marine deposition became progressively more terrestrially influenced. The Ameden Formation consists of dolomite, shale, sandstone, and limestone ranging between 250-350 feet thick. The Tendep Sandstone is a known reservoir interval containing massive to cross-bedded shelf and eolian sandstone deposits between 200-400 feet thick. By Permian time, the reservation area alternated between terrestrial shoreline and restricted carbonate depositional environments. The Phosphoria Formation contains an organic-rich source interval, dolomite, shale, and limestone deposits between 200-300 feet thick. Lower Triassic deposits contain the Dinwoody Formation (50-150 feet thick), dominantly terrestrial Chugwater Group deposits (800-1000’) containing typical ‘red bed’ continental sediments, and the Nugget Sandstone. The upper Triassic/lower Jurassic Nugget Formation is a known reservoir interval consisting of large-scale, cross-bedded eolian deposits. The formation is as thick as 300 feet, thins to the northeast, and is absent in the northern part of the reservation area. Jurassic deposition reflects both nearshore marine and fluvial conditions in the area. The Gypsum Spring and Sundance Formations contain calcitic limestone, glauconitic sandstone, gypsum and anhydrite ranging between 250-350 feet thick. The Morrison Formation consists of fluvial sandstone, silstones, and shales and contains well known dinosaur bone-beds.

Cretaceous Geologic History

Lower Cretaceous sediments reflect the first pulse of foreland basin development in the reservation area. Effects from the Sevier orogenic event located to the west are mainly restricted to relatively thin, fine-grained shale deposition in this area (Figure 3.1). The Cloverly Formation ranges between 250-450 feet thick and consists of ‘weathered’ thin sandstone deposits and paleosols representing coastal plain deposition. The Thermopolis and Mowry Shale Formations represent the initiation of clastic, marine epicontinental sea conditions.

Figure WR 3.1 - Generalized patterns of deposition in the Rocky Mountain area during Cretaceous time. A - E. Atlantic spreading caused uplift, thinning, and folding in the Sevier orogenic belt, synorogenic sediments were thick adjacent to the Sevier uplift and very thin elsewhere. B - Continued westward plate movement is reflected in uplifts on the western plate margin, thick deposits adjacent to the overthrust belt, and thin deposits over a wide area of the foreland. C - Early uppermost Cretaceous deposition is thickest adjacent to the overthrust belt; a thicker section of marine sediments may reflect a general downwarping of the foreland area. D - During latest Cretaceous and early Paleocene, the spreading rate between North America and Eurasia was greatly increased. Early Laramide buckling of the basement in the foreland began to occur, and foreland uplifts formed north-south parallel to the overthrust belt (after Gries, R. 1983).
Wind River Reservation

GEOL OGY OVERVIEW

Geologic History

Cretaceous Geologic History (Continued)

As the foreland area developed and the basin began to downwarp due to crustal loading, thick piles of sediment began to accumulate in front of the thrust sheets (Figure WR-3.1). The early Late Cretaceous Frontier Formation, an important oil/gas producing formation, ranges in thickness between 600-1000 feet. As downwarping continued, the clastic-marine Cody Shale was deposited. Accumulation ranges between 2500-5000 feet in thickness

Terrestrial conditions were re-established in the reservation area by the time the Mesaverde Formation was deposited. Containing fluvial and shoreline sandstones, coal, and carbonaceous shale, the formation ranges between 1000-2000 feet in thickness but is absent in the southwest part of the reservation due to later uplift and erosion. The overlying Mentineer Formation contains depositional environments similar to the Mesaverde, but the interbedded coal horizons are much thicker. Plant remains and dinosaur bones have been found in this formation and it can be up to 1400 feet in thickness.

As the basin buckled and uplifted during latest Cretaceous time, denudation of these highlands started to occur. The Lance Formation contains the first evidence of clasts from Paleozoic and Cambrian rocks deposited in lenticular conglomeratic horizons. While the thickness of the interval is highly variable, it can range up to 1200 feet in thickness.

Cenozoic Geologic History

On the margins of the Wind River Basin the Paleocene Fort Union Formation unconformably overlies the Late Cretaceous Lance Formation but in the northern and central troughs, fluvial and alluvial fan deposition continued (Figure WR 4.1). Earlier Eocene deposits of the Indian Meadows Formation contain abundant alluvial fan and channel sandstones and conglomerates. Mesozoic and Paleozoic rock clasts are common and landslide/slidge block masses from these thrust sheets are present as well. By the time of the Wind River Formation deposition, Precambrian rock fragments are abundant and reflect exposure of the igneous/metamorphic cores of the uplifts (Figure WR 4.1). The thickness of the Wind River Formation ranges from a few feet at the basin margin, to over 6000 feet in the northern part of the reservation area. Oligocene and younger sediments consist of a thin veneer of volcanic tuffs, volcanic breccia and sandstone deposits. Quaternary glacial till and outwash gravel are present in the southwestern part of the reservation.

Structural Evolution of Wind River Basin

Complex Laramide orogenic events produced a structural fabric in the Wind River area that produced polyphase structural re-orientations of major elements. However, studies of all the major Laramide Rocky Mountain basins and uplifts show similar patterns of development. The Laramide orogenic event was triggered by the opening of the mid-atlantic ridge and movement of the North American craton along a westward directed line of motion during latest Cretaceous time. The ridge-opening accelerated in Paleocene/Eocene time and movement of the craton became directed southwestward.

Most structural analyses indicate that little or no vertical movement occurred on east-west trending structures in latest Cretaceous/Paleocene time. However, substantial activity on northwest-southeast trending structures is likely and produced westward verging, linear thrust sheets (Figure WR-4.2). It is possible that east-west trending strike-slip faults also developed along zones of basement weakness.

Development of east-west trending thrust sheets occurred during maximum compression (southward directed) in Eocene time. Detailed surface mapping has shown Eocene east-west trending thrusts and folds truncate or are superimposed on earlier Laramide north- and northwest-trending thrusts and folds (Figure WR-4.2).

Early Laramide (latest Cretaceous) erosion was mostly from north-south trending arches and ranges (Gries, R.,1983). Eroded material included previously deposited Mesozoic shale, limestone, dolomite, and sandstone. As uplift continued in early Paleocene, Paleozoic rock fragments became incorporated in fluvial/alluvial sedimentation. Thick sections of lower - middle Eocene coarse, boulder conglomerates adjacent to the east-west trending ranges are evidence of major uplift during the late phase of the Laramide orogeny (Fig. WR-4.1).

Most foreland basins have thicker sections of Eocene syn-orogenic sedimentary rocks than Paleocene and uppermost Cretaceous, an indication perhaps of greater tectonism at the end of the Laramide orogeny than during the earlier phases (Gries, R., 1983).

GEOLOGY OVERVIEW

Geologic History

Wind River Reservation

Wyoming

Figure WR-4.1 - Depositional patterns of Eocene and Paleocene time slices in the Wind River Basin. A. - Fine grained (non-synorogenic) Paleocene sediments were thickest at the south end of the Big Horn Mountains and in a deep trough on the north side of the Wind River Basin. B. - Eocene deposition reflected the denudation of the Owl Creek and other surrounding uplifts with coarse-grained conglomerate and clasts of Paleozoic and Precambrian rocks (after Gries, R., 1983).

Figure WR-4.2 - Structure map of Wind River Reservation area (after Keefer, W., 1993).
Petroleum Systems Overview

In the Wind River Basin area, there are three and possibly four source rock petroleum systems that have generated or are generating hydrocarbons. The reservation area is ideally situated to explore at least three of these systems. Thrusting during the Laramide orogenic event has obscured evidence regarding migration pathways, lithofacies relationships, and even a clear determination of geothermal gradient in some areas. However, some generalizations can be made.

A major source rock interval in the Wind River Basin is the Permian Phosphoria Formation which contains two organic-rich shale members called the Meade Peak and Retort intervals. These rocks were formed at the periphery of a foreland basin between the Paleozoic continental margin and the North American cratonic shelf (see Fig. WR-5.1). Restricted circulation patterns, increased biologic activity due to zones of upwelling, and resultant anoxia contributed to the preservation of algal organic matter.

Petroleum generation from the Phosphoria Formation ranges due to zones of upwelling, and resultant anoxia contributed to the preservation of algal organic matter.

Petroleum generation from the Phosphoria Formation ranges due to zones of upwelling, and resultant anoxia contributed to the preservation of algal organic matter.

In the Wind River Basin area, the Mowry shales and their equivalents are major source rocks in the northern Rocky Mountain - Great Plains region. They are one of the major sources of hydrocarbon in the Jurassic Nugget Sandstone of southwestern Wyoming, lower Cretaceous Muddy Sandstone, and other Cretaceous sandstone reservoirs.

In the reservation area, the Mowry shale may range between 500 - 600 feet in thickness. A significant percentage of the interval includes non-source lithofacies such as olistrians, bioturbated mudstone, sandstone and siltstone. Typically, only the basal Mowry can be considered a source facies due to the presence of anoxic, laminated mudstone.

The Mowry shales contain a mixture of predominantly type II and type III organic matter (see Fig. WR-5.4). These organic matter types represent a mixing of terrestrial and marine organic matter. Organic matter suites with this composition are typical of shallow, epicontinental seas. In general, the Mowry section within the reservation area contains a higher percentage of terrestrially derived organic matter (more gas prone) than the shales deposited in the axial portion of the Mowry seaway.

Areas of anomalously low TOC values in the Mowry coincide with the deeper parts of Laramide structural basins which developed after the deposition of these shales. Regional variations in the TOC content may reflect in part a reduction of the TOC by thermal maturation or abrupt variations in the precursor organic facies (see Fig. WR-5.3).

The Meade Peak has been calculated to be 2.4%, with some beds containing as much as 30% organic carbon by weight. Average TOC from the Retort member ranges from 4.2-4.9%, maximum values are about 10 weight percent total organic carbon.

Hydrocarbon generation resulted from the effects of deep burial in westernmost Wyoming and adjacent areas (see Fig. WR-5.2). Fluids were generated during passage of the source rocks through the oil/condensate window corresponding to burial depths between 2.2 - 4.5 km. Relatively unimpeded migration pathways (both lateral and vertical) occurred during Late Cretaceous time just prior to the Laramide orogeny (Fig. WR-5.2).

The lower Cretaceous Mowry shales and their equivalents are major source rocks in the northern Rocky Mountain - Great Plains region. They are one of the major sources of hydrocarbon in the Jurassic Nugget Sandstone of southwestern Wyoming, lower Cretaceous Muddy Sandstone, and other Cretaceous sandstone reservoirs.

In the reservation area, the Mowry shale may range between 500 - 600 feet in thickness. A significant percentage of the interval includes non-source lithofacies such as olistrians, bioturbated mudstone, sandstone and siltstone. Typically, only the basal Mowry can be considered a source facies due to the presence of anoxic, laminated mudstone.

The Mowry shales contain a mixture of predominantly type II and type III organic matter (see Fig. WR-5.4). These organic matter types represent a mixing of terrestrial and marine organic matter. Organic matter suites with this composition are typical of shallow, epicontinental seas. In general, the Mowry section within the reservation area contains a higher percentage of terrestrially derived organic matter (more gas prone) than the shales deposited in the axial portion of the Mowry seaway.

Areas of anomalously low TOC values in the Mowry coincide with the deeper parts of Laramide structural basins which developed after the deposition of these shales. Regional variations in the TOC content may reflect in part a reduction of the TOC by thermal maturation or abrupt variations in the precursor organic facies (see Fig. WR-5.3).
3) The Uppermost Cretaceous/Lower Tertiary section of the reservation area contains several potential source horizons, either organic-rich shales or thin-bedded coals. Oil and gas produced from the Fort Union reservoirs, as well as oil shows in the Wind River Formation were probably generated from these intervals. In addition, Lance Formation shows and reservoired hydrocarbons may also be sourced from these zones.

Figure WR-6.1 depicts the distribution of basins in which thermogenic gas has been generated from Tertiary or Upper Cretaceous coals, generally under deep burial conditions. These coals contain typical type III gas-generating kerogen. These coals could charge conventional sandstone reservoirs as well as unconventional ‘tight’ sandstones (basin-center accumulations). In addition, the coals may also provide a viable exploration target. Humic coals are capable of both generating and storing significant amounts of dry methane gas. Methane generation commences within the high volatile bituminous A coal rank, where volatile matter content is 37.8% and vitrinite reflectance is 0.71% (Meissner, 1984). Lowland areas adjacent to the Cretaceous Swazey provided environments conducive to the formation of lagoonal swamps, shoreline paralic swamps, channel-overbank swamps, and restricted lacustrine swamps. Later Laramide orogenic activity has eroded some of these horizons while preserving others under thick volumes of Tertiary sediment (Figure WR-6.2).

In addition to coaly intervals, at least one shale horizon in the Tertiary section may have the organic richness to generate hydrocarbons (Figure WR-6.2). In the reservation area, the Waltman Shale has been modeled using known well data and vitrinite measurements. Approximate location of this well is located in Figure WR-6.1.

Figure WR-6.1: Generalized map showing the distribution of major Laramide structural basins and uplifts in the Rocky Mountain region. Eastward limit of Uppermost Cretaceous coal deposition is shown along with those basins which have reached sufficient maturity to generate gas from these coal deposits (after Meissner, F., 1984).

The major Tertiary oil source rock in the Wind River Basin is the Waltman Shale member of the Fort Union Formation. The Waltman Shale contains a mixture of both types II and III kerogen, with total organic carbon content values as high as 7.0 wt%. Mean Ro values for samples taken from the modeled well range from 0.61-0.9% (Figure WR-6.4). In general, oil generation is thought to begin around the 0.60 Ro value.

Using a constant heat flow value that matched measured Ro values, a burial and temperature history model was run to simulate the burial and temperature history of the stratigraphic interval was modeled (Figure WR-6.3). The maturity level for the Waltman Shale ranged between 0.70-0.90% Ro corresponding to burial depths between 7000-10,000’. Maximum burial temperatures reached 250 degrees F. Although not the highest value, the Waltman Shale has reached the proper maturity level to have generated hydrocarbons near the basin center.

Figure WR-6.2: Stratigraphic column of Tertiary stratigraphy in the reservation area of the Wind River Basin. Position of potential source interval is depicted in brown (after Nuccio, V., 1994).
WIND RIVER BASIN SCHEMATIC ILLUSTRATION OF POTENTIAL HYDROCARBON TRAPPING MECHANISMS AND PLAY TYPES

Figure WR 7.1 - Schematic illustration of play types showing distribution of hydrocarbons (modified from Willis & Groshong, 1993)

<table>
<thead>
<tr>
<th>Play Type</th>
<th>Description of Play</th>
<th>Oil or Gas</th>
<th>Known Accumulations</th>
<th>Undiscovered Resource (MMBO)</th>
<th>Play Probability</th>
<th>Drilling Depths</th>
<th>Favorable factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basin Margin Subthrust</td>
<td>Laramide basin-margin thrusting</td>
<td>Bull</td>
<td>50-200 BCF</td>
<td>3,000 - 12,000 ft</td>
<td>I</td>
<td></td>
<td>1) confirmed play; new, ongoing</td>
</tr>
<tr>
<td></td>
<td>overthrust wedge. Multiple reservoir horizons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) thermally mature source rocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) field size could be small</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3) drilling mobilization may be difficult</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4) seismic delineation may prove</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>has trapped oil/gas in upturned, exploration effort difficult</td>
</tr>
<tr>
<td>Basin Margin Anticline</td>
<td>Anticlinal noses and domes formed</td>
<td>Bull</td>
<td>420 MMBO</td>
<td>3,000 - 9,000 ft</td>
<td>I</td>
<td></td>
<td>1) confirmed play; new, ongoing</td>
</tr>
<tr>
<td></td>
<td>during the Laramide orogenic event.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) thermally mature source rocks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) chance of hydrodynamic flushing of small structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3) source rocks and reservoir present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4) seismic delineation is useful</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5) possible small target size</td>
</tr>
<tr>
<td>Deep Basin Structure</td>
<td>Intrabasin anticlinal, domal and fold structures within the deep, axial portion of</td>
<td>Bull</td>
<td>15 MMBO</td>
<td>3,000 - 14,000 ft</td>
<td>I</td>
<td></td>
<td>1) confirmed play; production exists</td>
</tr>
<tr>
<td></td>
<td>the basin. Forned, enhanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) source rocks in oil-gas window, new targets may be of smaller areal extent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3) source rocks and reservoir present</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4) increased depths enhances</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5) drilling may be difficult</td>
</tr>
</tbody>
</table>

Table WR 7.2 - Summary of play information.
<table>
<thead>
<tr>
<th>Play Type</th>
<th>Designation</th>
<th>Description of Play</th>
<th>Oil or Gas</th>
<th>Known Accumulations</th>
<th>Undiscovered Resources (1996)</th>
<th>Reservoir</th>
<th>Drilling depths</th>
<th>Favorable factors</th>
<th>Unfavorable factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratigraphic Play</td>
<td>4</td>
<td>Stratigraphic traps may exist in the Mowry Formation where sandstone lenses pinchout.</td>
<td>Gas</td>
<td>None</td>
<td>Very high risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Stratigraphic traps may exist in the Bighorn Dolomite which pinchout against the base of the Madison Limestone.</td>
<td>Gas</td>
<td>None</td>
<td>Very high risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Stratigraphic traps may exist in the Frontier Formation where sandstone lenses pinchout.</td>
<td>Oil</td>
<td>None</td>
<td>Very high risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Stratigraphic traps may exist in the Madison Limestone where sandstone lenses pinchout.</td>
<td>Gas</td>
<td>None</td>
<td>High risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Stratigraphic traps may exist in the Dakota Formation where sandstone lenses pinchout.</td>
<td>Gas</td>
<td>None</td>
<td>High risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Stratigraphic traps may exist in the Triassic and Jurassic Formations where sandstone lenses pinchout.</td>
<td>Gas</td>
<td>None</td>
<td>High risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Stratigraphic traps may exist in the Shallow Tertiary-Upper Cretaceous Formations where sandstone lenses pinchout.</td>
<td>Gas</td>
<td>None</td>
<td>High risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Stratigraphic traps may exist in the Cretaceous and Upper Paleozoic Formations where sandstone lenses pinchout.</td>
<td>Gas</td>
<td>None</td>
<td>High risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Stratigraphic traps may exist in the Basin center gas pools where sandstone lenses pinchout.</td>
<td>Gas</td>
<td>None</td>
<td>High risk, no calculated estimates</td>
<td>7,000 - 11,500 ft.</td>
<td>No production within</td>
<td>Limited production due to complex migration pathways.</td>
<td>High risk, complex play, reservoir quality, limited production.</td>
</tr>
</tbody>
</table>

Table WR 5.1 - Play summary information.

unconventional/hypothetical play
conventional play
PLAY TYPE 1

Basin Margin Subthrust Play

Laramide basin-margin thrusting has trapped oil and gas in upturned, overturned, folded, and faulted Phanerozoic strata below the overthrust wedge. The limits of this demonstrated play are defined by the leading edge of basin-margin thrust faults and an assumed overhand displacement of 6 mi. This is a currently developing exploration play (Cave Gulch discovery) with previous exploration success limited to the Tepee Flats field. The Tepee Flats field is currently producing gas from the Frontier Formation at a depth of about 12,200 ft. with a known recoverable of 9.0 BCFG (see Figures WR 10.2 & 10.3). Since this play has only been marginally explored, significant new reserves could be anticipated from this play type. The Cave Gulch discovery attests to the economic viability of this concept with known recoverable estimates ranging from 50-200 BCFG (Fig. WR-10.1). Sparse information has been published regarding this new discovery but it is thought that relatively 'shallow' (>10,000 feet) Upper Cretaceous reservoirs contain the gas reserves. In the reservation area, little exploration has occurred over the potential subthrust areas.

Reservoir type and quality are highly variable since any of the buried Mesozoic and Paleozoic potential reservoir horizons could be involved. Principal reservoirs include the Pennsylvanian Tensleep, Permian Phosphoria carbonates, and Upper Cretaceous Frontier, Mesaverde, and Lance Formations. Source horizons could be from the Phosphoria, Mowry, or Tertiary Fort Union Formations. It is likely that the shallower horizons would receive significant contributions from the Upper Cretaceous/Tertiary source intervals due to the simpler migration pathways. Because Laramide thrust faults have thrust thick wedges of Precambrian rocks over younger Paleozoic and Mesozoic intervals, the depth of burial of the source intervals is usually great enough for source rocks to have generated hydrocarbons locally or for hydrocarbons to have migrated from mature areas in deeper parts of the basin during/after Laramide deformation (Figure WR 10.3). Some pre-Laramide migration may have taken place, moving hydrocarbons into reservoirs before tectonic development of the basin-margin folds and faults. In this case, stratigraphic traps could have formed prior to basin-margin thrusting and folding. Subsequent structural development could have re-mobilized previously trapped hydrocarbons or kept the previous trap intact with a structural overprint enhancing the original trapping mechanism.

Petroleum is trapped where structures with closure occur beneath the basin-margin thrust and is sealed by associated rocks or by impermeable rocks of the hanging wall thrust sheet. In the thrusting process the underlying beds are folded and often upturned or overturned with fault slivers typically present (Figure WR-10.3). Oil and gas may also be trapped in these upturned, overturned, faulted, and folded strata. Depth of production is highly variable, ranging from more than 20,000 ft. on the structurally steepest side of the asymmetrical basin to less than 10,000 ft. in other basin-margin areas.

Figure WR-10.1 - Play outline for the Wind River Basin Margin Subthrust Play. Approximate location and type of penetrations in play outline located on figure. County and reservation outline depicted as well (from U.S.G.S. 1995 National Assessment).

Figure WR-10.2 - Location of adjacent Subthrust play example along the eastern margin of the Wind River Basin (from Gries, 1983).

Figure WR-10.3 - Subthrust structure on Casper arch could be similar to Madden field northwest of Moncrief 16-1 Tepee Flats discovery well. This structure is an symmetric fold related to compression of Owl Creek Range. Similar subthrust structure may be present in the reservation area (after Gries, 1983).
This mature exploration play is defined by the occurrence of oil and gas trapped in anticlines and domes, in many cases faulted, and in faulted noses that formed during major thrust movement in the Laramide orogeny. These structures are best developed along the shallow margins of the basin, with production ranging from about 1,000 ft. to 14,000 ft. The inner boundary of the play is located at the approximate basinward limit of basin-margin anticlines (Fig. WR-11.1). The outer boundary is drawn at the outcrop edge of the Tensleep Formation.

Basement-involved and basement-detached thrusting has produced complex folded/faulted anticlines, domes, and synclines. These surface features were drilled early (1900-1950’s) in the exploration history of the Wind River Basin. Figure WR-11.4 shows an example of a typical basement-involved thrust/fold pair showing development of subsidiary faults and upturned fault sliver. In this case, the Sage Creek Anticline has only produced minimal hydrocarbons. Figure WR-11.5 shows the development of a typical detachment structure, detachments usually occur in Triassic or Jurassic-aged sediments.

Major fields have been discovered in these complex thrust/fold structures. Circle Ridge contains multiple reservoir horizons ranging from the Madison to Phosphoria Formations (Figure WR-11.2). This is typical for this play type. Because of the shallow nature of some of these structures and close proximity to outcrop, tilted oil/water contacts are common due to flushing from nearby recharge areas (Fig. WR-11.2). Care must be taken in evaluating the hydrodynamic conditions of potential targets in this play type.
PLAY TYPE 2 (continued)
Basin Margin Anticline Play

Examples from the Circle Ridge Field illustrate the nature of this particular play type within the Wind River Basin. Producing formations range in age from Mississippian through Cretaceous and include Madison, Tensleep, Phosphoria, Sundance, Nugget, Cloverly, Muddy, Frontier, Cody, and Mesaverde Formations (see Figure WR-12.3). Primary production has been from the Madison, Tensleep, and Phosphoria Formations. Many of the fields have multiple pay zones and some show common oil-water contacts involving several of the Paleozoic reservoirs. Sandstone is the dominant reservoir lithology. Paleozoic reservoirs contain hydrocarbons derived from a distinct Phosphoria source facies. Two fields in the western part of the basin, Circle Ridge and Beaver Creek, produce oil from the Madison Limestone (see Figure WR-12.1). Properties of the oil in these two fields are nearly identical to those of the Tensleep and Phosphoria oil in the same area, indicating that the oil may have been derived from the younger Phosphoria source or re-mobilized from younger reservoir horizons. Figure WR-12.3 depicts the structural position of the Phosphoria in relation to other reservoir horizons; additional throw in the structure could easily juxtapose Madison against known source intervals or reservoirs.

Pre-Laramide generation and long-distance migration from western Wyoming prior to basin formation, followed by remigration during the Laramide Orogeny, is a possibility for charging lower Paleozoic reservoirs. However, local generation of deeply buried Cretaceous source rocks is a likely mechanism for charging reservoirs as well. Structural closure in faulted anticlines, domes, and noses is the predominant trapping mechanism for this play. Figure WR-12.2 illustrates the typical thrust/fold structural pattern found in this play type. The shallower portions of these structures tend to become structurally more complex due to subsidiary fault development along the major thrust horizons. While the deeper, larger areas of structural closure may have been thoroughly explored, the smaller, shallower structural compartments should offer significant potential for future exploration.

CONVENTIONAL PLAY TYPE 2
Basin Margin Anticline Play (Continued)
Deep Basin Structure

This is a demonstrated gas play with entrapment in large intrabasin anticlinal, domal, and fold nose structures within the deep axial portion of the basin. The boundary of this play is defined on the north by the leading edge of the northern basin-margin thrust fault and on the south and west by the deep limit of the Basin Margin Anticline Play. Reservoir rocks range in age from Mississippian to Eocene. The bulk of the gas production has been from Lance, Fort Union, Wind River, and Mesaverde Formations. However, deeper drilling has encountered significant reserves in the Mississippian Madison and Pennsylvanian Tensleep Formations. Porosity and permeability reduced through compaction/cementation with deeper burial, may be re-enhanced by fracturing and secondary cement dissolution. Early migration and entrapment may have preserved some of the original porosity. Even if the hydrocarbons have been re-mobilized due to movement associated with the Laramide Orogeny, the porosity and permeability may have been preserved. This would allow subsequent migration into reservoir intervals from source rocks that initiated generation/expulsion in late Paleocene through to the present time.

Most fields have multiple pool production from a great range of depths and thicknesses. Most individual reservoir intervals range between 25-50 feet in thickness. Reservoirs may be overpressured; for example most Tertiary and Mesozoic strata on the Madden structure are overpressured but nearly normal pressure gradients occur near the top of the Paleozoic interval.

Most of the productive reservoir intervals are interbedded with source rocks. This facilitates migration and entrapment of the hydrocarbons. Indigenous source rocks are found in the Permian Phosphoria, Cretaceous Mowry, and Tertiary Fort Union (including Waltman shale) Formations. Early Paleocene generation from the Fort Union sources has been modeled using vitrinite reflectance data. Generation probably continues to present and accounts for some of the overpressured intervals encountered in some fields.

Potential for undiscovered resources may be good-excellent in this play due to deeper pool discoveries. Madden Field (825 BCFG), Pavillion (174 BCFG), Waltman-Bull Frog (96 BCFG), and Frenchie Draw (46.5 BCFG) all have the potential for deeper reservoir horizons. In fact, many of the currently discovered fields do not include Paleozoic units such as the Madison Limestone, which is a major new reservoir at Madden Field.

Pavilion Field
Wind River Basin
Datum - Fort Union Formation

Pavilion Field Parameters
- Formations: Fort Union & Wind River Fm.
- Lithology: sandstone
- Porosity: 20%, range 4-28%
- Permeability: av. 3 md, range from 0.1 - 300 md
- Pay thickness: 60 feet
- Oil/Gas column: 400-600 feet
- Gas/Oil Ratio: almost 100% dry methane gas
- Depths: 3000-12,000 feet subsea
- Other: Deeper pools in both Pavillion and Madden Fields have been found in the Miss. Madison, Cretaceous Frontier, Cody, and Mesaverde Formations.
Wind River Reservation

Wyoming

Figure WR-14.2 - Distribution of fields within the Wind River Basin that are producing from the Muddy Sandstone gas wells, and reservation outline (from U.S.G.S. 1995 National Hydrocarbon Assessment).

Figure WR-14.1 - Play outline for the Muddy Sandstone Play showing distribution of dry holes, oil and gas wells, and reservation outline (from U.S.G.S. 1995 National Hydrocarbon Assessment).

Figure WR-14.3 - Generalized alluvial valley model applicable to the Muddy Formation (Weimer, 1983). (A) Initial wave dominated deltaic progradation during highstand (B). T3 time depicts truncation of older marine and deltaic deposits with continued sea level lowering. (C), T4 time shows relative sea level rise and backfilling of valley networks with fluviatile marine strata (Dolson, et al, 1991).

Figure WR-14.4 - Muddy Sandstone drainage networks developed at maximum sea level lowstand. Paleocurrent directions shown are derived from cross-bedding in fluviatile strata. Mile position of general reservation area relative to channel networks and deltaic (from Dolson, et al. 1991).

PLAY TYPE 4

Muddy Sandstone Stratigraphic Play

This is a stratigraphic play with anticipated entrapment of oil/gas in updip pinchouts of discontinuous Muddy Sandstone bodies, deposited as a complex series of coastal/valley-fill sandstone horizons whose distribution is controlled by paleotopography and sea-level fluctuations. Actual outline of play area may be unknown due to subtle nature of some channel/outline complexes on seismic (Figure WR-14.1).

The Muddy Sandstone and equivalent strata have produced more than 1.7 billion bbl of oil-equivalent hydrocarbons in the Rocky Mountain region. Production is controlled principally by unconformities formed during a relative sea level lowstand. Reservoirs are found in paleohills of older marine sandstones, younger valley fill and associated alluvial plain channel sandstones, and infilling transgressive marine deposits (see Figures WR-14.3 and WR-14.4).

Valley fill and channel reservoirs have produced at least 359 MMBOE, onlap cycles another 318 MMBOE, and older marine buried-hill reservoirs more than 269 MMBOE. The excellent reservoir characteristics and the high quality of oil (33-43 API gravity) make it a prime drilling objective. Porosity ranges from about 9% - 15% at depths to about 11,000 ft. Most reservoirs range between 20 - 52 ft. in thickness.

Migration from adjacent Mowry source rocks provides efficient pathways for fluid migration. This demonstrated play is heavily explored along the southern margin of the basin but is lightly explored in the central or western regions. Relatively new discoveries at Austin Creek (1988) and Sun Ranch (1987) indicate that additional exploration opportunities are possible.

The reservation area is ideally situated to capitalize on new target possibilities within this play. Application of improved seismic processing techniques, sequence stratigraphic principles, and fluid migration modeling could greatly enhance the future potential within this play type.
Phosphoria Stratigraphic Play

High sulfur oil may be stratigraphically trapped in the Ervay Member of the Phosphoria Formation along a north-south transition zone from Phosphoria carbonates to the west and red shale and evaporites to the east (Fig. WR-15.2). The play area is located in the eastern Wind River Basin, limits of the play defined to the east by the limited extent of the Ervay Member, to the west by the estimated limit of viable carbonate porosity, and to the north and south by Phosphoria outcrops (Fig. WR-15.1).

Potential reservoir intervals occur in the Ervay Member of the Phosphoria Formation. They are typically dolomitized grainstones and packstones, along with algal framework laminations containing abundant fenestrate porosity. These reservoir intervals formed in high-energy tidal and shoreline environments. Reservoir matrix porosities average about 10 percent, but are fracture enhanced due to generation of hydrocarbons in-situ. Reservoir thicknesses range between 25 - 75 feet.

The interbedded nature of the carbonate facies with known source facies in the Phosphoria may create efficient migration pathways into reservoir horizons. Exploration in this interval was initiated back in 1953 with the discovery of the Cottonwood Creek Field in this interval was initiated back in 1953 with the discovery of the Cottonwood Creek Field in Cenozoic rocks. It is a hypothetical play concept characterized by wedge-edge pinchouts of the Ordovician Bighorn Dolomite against the base of the Madison Limestone (Fig. WR-15.3). This is a very high risk play with no known hydrocarbon occurrences or source rocks to occur near/within the potential trapping horizon. Reservoirs in the Bighorn Dolomite could contain moderate-high porosities within an intergranular fabric. Dolomitized intervals within this formation are very common and anticipated to occur throughout most of the reservation area. Although regional truncation is demonstrated, the presence of traps at this unconformity horizon is undocumented.
PLAY TYPE 8

Madison Limestone Stratigraphic Play

This hypothetical play encompasses possible hydrocarbons enclosed within or at the top of the Mississippian Madison Limestone. The trapping mechanism involves a combination of porosity variation and topography creation related to karst development.

Karstic, vuggy porosity carbonate intervals in the upper part of the Madison Limestone are expected throughout the play area (Figure WR-16.1). In some cases, these intervals may be fracture enhanced. The presence of sealing horizons above the Madison remain problematic. In addition, to charge these potential reservoirs requires fault juxtaposition of Phosphoria source against Madison. This requires advantageous timing of hydrocarbon generation, structural development, and migration.

No production exists utilizing this play concept within the Wind River Basin and the presence of effective traps has not been demonstrated. As a result, this play type is classified as very high risk owing to poor charge and trap potential. Detailed mapping of the Madison karst surface is required to evaluate the exploitation potential within the reservation area.

PLAY TYPE 9

Darwin-Amsden Sandstone Stratigraphic Play

This hypothetical play consists of stratigraphic entrapment of oil in discontinuous sandstone lenses of the Pennsylvanian Darwin and Amsden Formations. Although no known traps exist within the Wind River Basin, these formations are productive elsewhere in structural settings.

Potential reservoir intervals in poor-moderately porous sandstones are believed to be present over most of the reservation area. Total interval thickness ranges between 100 - 300 feet (Figure WR-16.2). Variable quality of porosity and permeability are expected and may be modified by burial diagenetic processes. Hydrocarbon charging of this interval is problematic and would require complex, structurally modified, migration pathways. In addition, poor seal quality is expected immediately above the horizon.

No production exists within this play type and it is classified as a high risk exploration target. Considerable variation of sandstone distribution and porosity exists within the interval; detailed facies mapping of the Amsden as well as detailed structural modeling would be required to effectively explore for hydrocarbons.

PLAY TYPE 12

Cody and Frontier Stratigraphic Play

This hypothetical play would include deep oil and gas accumulations in stratigraphic traps from the Upper Cretaceous Cody and Frontier Formations. These sandstone/shale intervals are in thick marine sequences of shale and fine-grained sandstone.

Potential reservoir intervals of sheets of fine-grained sandstone are present throughout the reservation area. Although equivalent reservoirs are productive in structural settings, reservoir quality and effective traps in deeper, off-structural settings remain speculative.

Cretaceous source rock intervals in the Mowry Shale are interbedded with these potential reservoir horizons. A favorable hydrocarbon generation and migration history could charge these reservoirs if an effective trapping mechanism is present. The presence of traps of significant size have not been demonstrated.

This play is characterized as high risk because of these issues.
PLAY TYPE 11
Shallow Tertiary/Upper Cretaceous Stratigraphic Play

Primarily a gas play, the shallow Tertiary and Upper Cretaceous reservoirs have also yielded liquids as well in these discontinuous, sandstone reservoirs. This play has been lightly explored for years and a number of small accumulations have been discovered within/outside the reservation area (Figures WR-17.1 and WR-17.2).

In general, the proven reservoirs include the Wind River, Fort Union, Lance and Mesaverde Formations (Figure WR-17.3). These clastic sandstone reservoirs have good-excellent porosity and permeability, however, most exhibit discontinuous, fluvial reservoir architecture (Figure WR-17.4). Source horizons are underlying/interbedded Cretaceous/Paleocene shales and coals. Humic-rich coal horizons may be contributing to the gas charge as well as other shale zones with abundant Type III kerogen mixtures (Figure WR-17.2). In some instances, oil from the Waltman Shale has accumulated in reservoirs of Upper Cretaceous through Eocene age.

Facies changes and local erosional unconformities associated with channel migration are the typical trapping mechanisms for these fluvial reservoirs. They are typically alluvial/fluvial sandstones that form localized channel bodies of limited areal extent (Figure WR-17.4). Traps are small and sometimes occur in combination with structural enhancement. Seals are provided by associated fine-grained overbank shales. Fluid migration is primarily vertical.

Stacking of multiple reservoir horizons is enhanced when the underlying Cretaceous Mesaverde Formation is unconformably overlain by younger Paleocene reservoirs. This also allows more efficient migration from source horizons within Upper Cretaceous/Paleocene intervals (Figure WR-17.5).
Wind River Reservation
Wyoming

Wind River Reservation
Wyoming

Table WR-18.1

<table>
<thead>
<tr>
<th>Property</th>
<th>Conventional Gas Sandstone</th>
<th>‘Tight’ Gas Blanket/Lenticular Sandstone (Low Pressure Reservoir)</th>
<th>‘Tight’ Gas Blanket Siltstone, Silty Shale (High Pressure Reservoir)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity (%)</td>
<td>14 - 25+</td>
<td>3 - 12+</td>
<td>10 - 30+ in individual siltstone lamination</td>
</tr>
<tr>
<td>Porosity Type</td>
<td>Primary (intergranular), some secondary</td>
<td>Common secondary (micro)</td>
<td>Commonly primary, some secondary</td>
</tr>
<tr>
<td>Porosity Communication</td>
<td>Good-excellent, short pore throats</td>
<td>Poor, relatively long, sheet/ribbon-like capillary system</td>
<td>Good, short pore throats, but gas impeded by clays, small size of pores, and high Sw</td>
</tr>
<tr>
<td>Relative Clay Content in Pores (%)</td>
<td>Low</td>
<td>High to moderate</td>
<td>Low to High</td>
</tr>
<tr>
<td>Water Saturation (%)</td>
<td>25 - 50</td>
<td>45 - 70%</td>
<td>40 - 90 approximate</td>
</tr>
<tr>
<td>In-Situ Permeability to Gas (md)</td>
<td>1.0 - 500+</td>
<td>0.1 - 0.0005</td>
<td><0.1</td>
</tr>
<tr>
<td>Capillary Pressure</td>
<td>Low</td>
<td>Relatively high</td>
<td>Moderate</td>
</tr>
<tr>
<td>Grain Density (g/cc)</td>
<td>2.65</td>
<td>2.65 - 2.74 average; 2.65 - 2.71 microstone</td>
<td>Unknown, probably 2.65 - 2.70</td>
</tr>
<tr>
<td>Reservoir Pressure</td>
<td>Usually normal underpressured</td>
<td>May be under-pressured</td>
<td>Overpressured (relative)</td>
</tr>
<tr>
<td>Recovery of Gas in Place (%)</td>
<td>75 - 90</td>
<td><15 - 10 estimated low for individual reservoirs</td>
<td>Unknown, probably low</td>
</tr>
</tbody>
</table>

Figure WR-18.1 - Basin-Center Gas Play showing distribution of dry holes, oil and gas wells, and reservation outline (from U.S.G.S. 1995 National Hydrocarbon Assessment).

Figure WR-18.2 - Generalized schematic cross-section showing general distribution of gas and water in conventional and ‘tight’ reservoirs (after C.W. Spencer, 1989).

Basin-Center Gas Play

This play is characterized by an extensive and continuous overpressured gas accumulation trapped in low permeability Paleocene and uppermost Cretaceous sandstone reservoirs in the deep parts of the Wind River Basin (Figure WR-18.1). The play exists because the active generation of gas from source intervals in the deep part of the basin creates overpressuring. This allows reservoirs to be charged that would otherwise be non-reservoir intervals because of low permeability and porosity.

Principal reservoirs are sandstone beds in the Fort Union, Lance and Mesaverde Formations. They are generally arkosic or lithic in composition, with poor to modest porosity and low permeability (Table WR-18.1). Within the reservation area the reservoirs could be of three types; alluvial-fluvial sandstone bodies with channels of limited areal extent, marine sandstone intervals with a more blanket-like character, and overbank siltstone/silty sandstone crevasse splay deposits.

Trapping mechanisms for this play concept are depicted in Figure WR-18.2. This play will only be viable if active generation is occurring to continuously replenish the reservoir intervals since most sealing intervals are ‘leaky’ with respect to gas in these environments. Transient sealing mechanisms are common in deep, basin-center accumulations.

Since active generation is occurring from most of the Tertiary/Upper Cretaceous humic-rich coals and shales, timing is extremely favorable with reference to the interbedded potential reservoir intervals. Overpressuring which is one result of the active generation of gas appears to generally coincide with Ro=1.0% burial indicator. This maturation index is usually reached at about 10,000 feet. Therefore, those Tertiary and Upper Cretaceous intervals below this subsea elevation could be considered potential exploration targets.

The limiting factors regarding the development of these reservoirs are principally economic; the price of gas and expense associated in developing reservoirs with significant internal compartmentalization. Therefore, this play is considered high risk even though active generation from source intervals is occurring at the present time.

![Diagram of trapping mechanism for Basin Center Gas Play Type](image-url)

Note: Conventional reservoirs have gas-water contacts while the low-permeability ‘tight’ reservoirs do not. A source interval that is still in the active generation stage is needed to charge and ‘overpressure’ the low-permeability reservoir horizons (after C.W. Spencer, 1989).
Wind River General References

Meissner, F.F., 1984, Cretaceous and Lower Tertiary coal as sources for gas accumulations in the Rocky Mountain area, in RMAG Hydrocarbon source rocks of the greater Rocky Mountain region, p. 401-432.

